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Important Rules
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Important rules on trigonometric functions
sin(xy) = sinxcosy cosx siny sin2x = 2 sinx cosx

cos(xy) = cosxcosy sinx siny cos2x = cos2 x - sin2 x

cosxcosy=[cos(x-y)+ cos(x+y)]/2 cos2 x + sin2 x = 1

sinx siny=[cos(x-y)-cos(x+y)]/2 cos2 x = (1+cos2x)
2

sinxcosy= [sin(x-y) + sin(x+y)]/2 sin2 x = (1- cos2x)
2

sinx = cos(90- ) tanx = cot(90- )

cosx = sin(90- ) cotx = tan(90- )

tan2 x = sec2 x -1 cot2 x = csc2 x -1
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Important rules on hyperbolic functions

sinhx =
x -xe e

2
 ,    coshx =

x -xe e
2
 ,  coshx + sinhx = ex

tanhx=
x -x
x -x

sinh x e e
e ecosh x
  ,cothx=

x -x
x -x

1 cosh x e e
e etanh x sinh x
  

cschx = x -x
2

e e
1

sinh x  ,   sechx = x -x
2

e e
1

cosh x  ,

sinh(xy) = sinhx coshy coshx sinhy

cosh(xy) = coshx coshy sinhx sinhy

sinh2x = 2 sinhx coshx,  cosh2x = cosh2 x + sinh2 x

cosh2 x = (1+cosh2x)
2 ,   sinh2 x = (cosh2x-1)

2 ,

cosh2 x-sinh2 x = 1, tanh2 x =1-sech2 x,  coth2 x = 1+csch2 x



Ordinary differential equation

226

Important rules on logarithmic functions

1) loga[xy] = loga[x] + loga[y]

2) loga[x/y] = loga[x] - loga[y]

3) loga[xy] = yloga[x]

4) loga[x] = lnx / lna

Important rules on derivatives
Function First derivative

cf(x) f(x) f(x)d df[c ] c ln cdx dx

ln(f(x)) d df[ln(f(x)] f (x)dx dx /

sin f(x) d df[sin f(x)] [cos f(x)]dx dx

cos f(x) d df[cos f(x)] [sin f(x)]dx dx 

tan f(x) 2d df[tan f(x)] sec f(x)dx dx

sec f(x) d df[sec f(x)] secf(x) tan f(x)dx dx

cosec f(x) d df[cosec f(x)] cosecf(x) cot f(x)dx dx



Ordinary differential equation

227

cot f(x) 2d df[cot f(x)] cosec f(x)dx dx

arccosf(x) 2

1d df[arccos f(x)]dx dx1 [f (x)]
 



arcsin f(x) 2

1d df[arcsin f(x)] =dx dx1 [f (x)]

arctan f(x) 2
1d df[arctan f(x)] =dx dx1 [f (x)]

arccot f(x) 2
1d df[arccot f(x)] = -dx dx1 [f (x)]

arcsec f(x) 2

1d df[arcsec f(x)]dx dx[f (x)] [f (x)] 1




arccsc f(x) 2

1d df[arccosec f(x)]dx dx[f (x)] [f (x)] 1
 



cosh f(x) d df[cosh f(x)] [sinh f(x)]dx dx

sinh f(x) d df[sinh f(x)] [cosh f(x)]dx dx

tanh f(x) 2d df[tanh f(x)] sech f(x)dx dx
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sech f(x) d df[sech f(x)] sech f(x) tanh f(x)dx dx

csch f(x) d df[csch f(x)] csch f(x) coth f(x)dx dx

coth f(x) 2d df[coth f(x)] cosech f(x)dx dx

cosh-1 f(x)
-1

2

1d df[cosh f(x)]dx dx[f (x)] 1




sinh-1 f(x)
-1

2

1d df[sinh f(x)] =dx dx1 [f (x)]

tanh-1 f(x) -1
2

1d df[tanh f(x)] =dx dx1 [f (x)]

coth-1 f(x) -1
2

1d df[coth f(x)] =dx dx1 [f (x)]

sech-1 f(x)
-1

2

1d df[sech f(x)]dx dxf(x) 1 [f (x)]
 



csch-1 f(x)
-1

2

1d df[csch f(x)]dx dxf(x) 1 [f (x)]
 


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Chapter 5

Ordinary Differential equations
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5.1 Introduction

In mathematics, an ordinary differential equation or

O.D.E. is a differential equation containing a function or

functions of one independent variable and its derivatives. The

term "ordinary" is used in contrast with the term partial

differential equation which may be with respect to more

than one independent variable.

Linear differential equations, which have solutions that can

be added and multiplied by coefficients, are well-defined and

understood and exact closed-form solutions are obtained. By

contrast, ODEs that lack additive solutions are nonlinear, and

solving them is far more intricate, as one can rarely represent

them by elementary functions in closed form: Instead, exact

and analytic solutions of ODEs are in series or integral form.

Graphical and numerical methods applied by hand or by

computer, may approximate solutions of ODEs and perhaps

yield useful information, often sufficing in the absence of

exact, analytic solutions.
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An ordinary differential equation (frequently called an

"ODE," "diff eq," or "diffy Q") is an equality involving a

function and its derivatives. An ODE of order n is an

equation of the form F(x,y,y`,y``,…,y(n)) = 0, where y is a

function of x, y` is the first derivative with respect to x, y`` is

the second derivative with respect to x,….y(n) is the nth

derivative with respect to x.

The following definitions must be studied carefully

Differential equation: A differential equation is an equation

containing derivatives of a dependent variable with respect to

one or more or independent variables. The following are

typical examples:
2

2
d y 6x
dx

 ,

3dyx 3y y
dx

  ,

2 32
62

d y dy y
dxdx

         
 .
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Ordinary differential equation: A differential equation

containing a single independent variable. The derivatives

occurring in the equation are ordinary derivatives.

Partial differential equation: A differential equation

containing two or more independent variables. The

derivatives occurring in the equation are partial derivatives.

Order of a differential equation: The order of the highest

ordered derivative occurring in the equation.

For the above examples, the first and the third differential

equations are of order 2 and the second differential equation

is of order 1.

Degree of a differential equation: In general, the degree of

the highest ordered derivative occurring in the equation.

However, not every differential equation has a degree. If the

derivatives occur within radicals or fractions the equation

may not have a degree. If the equation can be rationalized

and cleared of fractions with regard to all derivatives present,

then its degree is the degree of the highest ordered derivative

occurring in the equation.



Ordinary differential equation

237

For the above examples, the first and the second differential

equations are of degree 1 and the third differential equation is

of degree 2.

Linear differential equation: A linear differential equation

is an equation of the form

n n 1
n0 1 n 1n n 1

dy dy dya a ... a a y f (x)
dxd x d x


     ,

where the ai(x) are functions of x only. It is an equation in

which each term is of first degree in the dependent variable

and its derivatives.

Solutions of differential equations: A solution of a

differential equation is any relation, free of derivatives,

between the variables involved that reduces the differential

equation to an identity. The solution may take the form of the

dependent variable being expressed explicitly as a function of

the independent variable (or variables) as in y = f(x) or

implicitly as in a relation of the type f(x, y) = 0.
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5.2 First order ordinary D.E.
In this section we will look at solving first order differential

equations. The most general first order differential equation

can be written as,

dy f (x,y)dx  (1)

As we will see in this chapter there is no general formula for

the solution to (1). What we will do instead is look at several

special cases and see how to solve those. We will also look at

some of the theory behind first order differential equations as

well as some applications of first order differential equations.

Below is a list of the topics discussed in this chapter.

Separable Equations: Identifying and solving separable first

order differential equations. We’ll also start looking at

finding the interval of validity from the solution to a

differential equation.
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Substitutions: there are many types of differential equations

using substitution methods, such as homogenous, non

homogenous, same slope equations.

Exact Equations: Identifying and solving exact differential

equations. We’ll do a few more intervals of validity

problems here as well.

Linear Equations: Identifying and solving linear first order

differential equations.

Bernoulli Differential Equations : In this section we’ll see

how to solve the Bernoulli Differential Equation.

This section will also introduce the idea of using a

substitution to help us solve differential equations and now

we will discuss each method used in solving first order

ordinary differential equations.
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5.2.1 Separable Equations

The differential equation of the form dy f (x,y)dx  is called

separable, if

f(x,y) = h(x) g(y) (2)

That is, dy h(x) g(y)dx  . In order to solve it, perform the

following steps:

 Rewrite the equation dy h(x) g(y)dx  as dy h(x) dxg(y) 

 Integrate dy h(x) dxg(y)  to obtain G(y)= H(x) + C

 If you are given an IVP, use the initial condition to find

the particular solution.

Example 1 : Find the particular solution of
2dy y 1
xdx
 ,

y(1) = 2

Solution: Rewrite the equation as 2
dy dx

xy 1



, then using the

techniques of integration of rational functions with the aid of
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the partial fraction , we get 2

y 1dy 1 ln2y 1 y 1



  which implies

the solutions to the given differential equation is

y 11 ln ln x C2 y 1


 


. We need to find the constant C, so that

if we plug in the condition y=2 when x=1, we get

C = 1 1ln( )2 3 , note that this solution is given in an implicit

form. You may be asked to rewrite it in an explicit one. For

example, in this case, we have
2

2
3 xy
3 x



.

Example 2 : Find solution to 2
dy 11dt y

 

Solution: Rewrite the equation as
2

2
y dy dt
y 1




, then integrate

such that:
2 2

2 2 2
y dy (y 1 1)dy 1(1 )dy dt C
y 1 y 1 y 1

     
     

which implies the solutions to the given differential equation

is  y – tan-1 (y) = t + C
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Example 3 : Solve the initial value problem

2 2 2 2dy 1 t y t ydt     ,   y(0) = 1

Solution: Rewrite the equation as 2
2
dy (t 1)dt

y 1
 


, then

integrate such that 2
2
dy (t 1)dt C

y 1
  

  which implies the

solutions to the given D.E. is tan-1y =
3t
3 +t + C, but for t

= 0, y = 1, C = tan-11 = 4
 , thus tan-1y =

3t
3 + t + 4

 .

5.2.2 Homogeneous Equations

The differential equation dy f (x,y)dx  is homogeneous if the

function f(x,y) is homogeneous such that :

f (tx,ty) = f (x,y)      for any number t. (3)
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Example 4: Check that the functions are homogeneous.

2

3 2 2 2
3x y xyf (x,y) ln( ), g(x,y) ( )

x 4xy x y
 
 

Solution:
2

3 2
3(tx) tyf (tx, ty) ln( ) f (x,y) ,

(tx) 4tx(ty)
 


2 2
tx(ty)g(tx, ty) ( ) g(x,y)

(tx) (ty)
 



In order to solve this type of equation we make use of a

substitution    v = y
x . Let us summarize the steps to follow:

 Recognize that your equation is an homogeneous equation;

that is, you need to check that f(tx,ty)=  f(x,y), meaning that

f(tx,ty) is independent of the variable t; then write out the

substitution  v =y/x; hence put  y = vx and dy = vdx +xdv

in the equation.

 Through easy differentiation, find the new equation

satisfied by the new function v.

 Solve the new equation (which is always separable) to find

v.

 Go to the old function y through the substitution y= vx.
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 If you have an I.V.P., use the initial condition to find the

particular solution.

Example 5: Find solution to dy 2x 5y
2x ydx
  

Solution: Follow these steps:

 Since dy 2x 5y
2x ydx
   is homogeneous;

 Put y = vx , hence dy= v dx + x dv, therefore

vdx +xdv   2x 5vx 2 5v
2x vx 2 vdx
      ,

Hence

2
(2 v)dvdx 0x v 3v 2
 
 

 This is a separable equation , we can solve it using

partial fraction, so that

dx 4 3( )dv Cx v 2 v 1    
 Integrate, we get its solution such that

lnx = 4ln(v-2) - 3 ln(v-1) + C, but v = y/x , therefore

2lnx = 4 ln(y-2x) - 3 ln(y-x) + C.
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Example 6: Find solution to 2 2
dy xy
dx x y




Solution: Since 2 2
xy

x y
is homogeneous, put y = vx, and

dy = vdx + xdv in  the above equation, we get

2 2 2
x(vx)vdx +xdv  v

dx x (vx) 1 v
 

 
, it is a separable equation

such that:
2

3
(1 v )dvdx 0x v
  , integrate this equation, such

that ln x- 2
1

2v
+ln v= C, but y = vx , therefore  ln y -

2

2
x

2y
= C.

5.2.3 Same Slope Equations

The differential equation of the form dy f (x,y)dx  is called

same slope equation if

f(x,y) = ax by c
px qy s
 
  and a b LP q  (4)

L(px + qy) = ax + by , s, c are constants of the straight lines.

In order to solve this type of equation we make use of a

substitution u= px + qy, therefore du = pdx + qdy, and
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ax + by = Lu, hence the differential equation will be in the

form du pdx Lu c
u sqdx

   , it can be expressed in the form

(u s)du dxp(u s) q(Lu c)
    which is separable equation.

Example 7 : Find solution to dy 2x 3y 7
4x 6y 28dx

   

Solution:

Since 2x 3y 7  , 4x 6y 28  are two first degree

expressions with the same slope, therefore dy 2x 3y 7
4x 6y 28dx

   

is called same slope equation. To solve this differential

equation, we have to follow these steps:

 Put u = 2x 3y  du = 2dx+3dy , so 1dy (du 2dx)3 

 Substitute in the differential equation, we get

(du 2dx) u 7
2u 283dx

   ,
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Therefore

dx = (2u 28)du 2 u 14( )du7 u 11(7u 77)
   ,

Thus

dx = 2 u 14 2 u 11 3 2 3( )du ( )du (1 )du7 7 7u 11 u 11 u 11
      

Integrate the above equation such that

2 3dx (1 )du C7 u 11    

Therefore

2x [u 3ln(u 11)] C7    , but u = 2x 3y

hence the solution of differential equation is

2x [2x 3y 3ln(2x 3y 11)] C7     
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5.2.4 Non Homogeneous Equations

The differential equation of the form dy f (x,y)dx  is called

non homogeneous equation if f(x,y) = ax by c
px qy s
 
  , where

ax + by + c = 0, px + qy + s=0 are not parallel and not

homogeneous. To solve the differential equation , we have to

follow the following steps:

 Solve the two lines ax + by + c = 0, px + qy + s = 0 to

get the point of intersection which is bs qc pc as( , )aq bp aq bp
 
  ,

 Put x = X + bs qc
aq bp

 , y = Y+ pc as

aq bp

 , and dx=dX,

dy=dY, so the differential equation is transformed into

dY aX bY
pX qYdX

  which become a homogeneous equation so

that we can solve it by substitution Y= vX  dy = vdX+Xdv,

then the differential equation will be separable equation such

that:
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vdX+Xdv aX bvX a bv
pX qvX p qvdX

    ,

 Integrate the differential equation 2
(p qv)dvdX

X qv bv a

 

 Substitute  X = x - bs qc
aq bp

 ,  Y = y - pc as

aq bp

 , and

y(aq bp)-(pc as)Yv X x(aq bp) (bs qc)
      .

Example 8 : Find solution to dy x y 3
x y 1dx
   

Solution: Since dy x y 3
x y 1dx
    is non homogeneous equation.

To solve this differential equation, we have to follow these

steps

 We have to get the point of intersection between

x + y + 3 = 0,      x – y + 1= 0 which is (-2,-1),

 Put x = X-2, y=Y-1, dx = dX, dy = dY in the above

differential equation, then dY X Y
X YdX
  , so it is a

homogeneous equation,
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 Put Y = vX, and dY = vdX + Xdv, therefore

vdX+Xdv X vX 1 v
X vX 1 vdX    

 Integrate 2
(1 v)dvdX

X 1 v



, then put  X=x+2, y 1Yv X x 2
   ,

hence  the solution of the differential equation is

Ln(x+2) = tan-1( y 1
x 2

 ) -

2 2

2
(y 1) (x 2)1 ln( )2 (x 2)
  


+C

5.2.5 Exact and non exact Equations

All the techniques we have reviewed so far were not of a

general nature since in each case the equations themselves

were of a special form. So, we may ask, what to do for the

general equation dy f (x,y)dx 

Let us first rewrite the equation into M(x,y)dx + N(x,y)dy = 0

This equation will be called exact if

M N
y x

   and non exact otherwise (5)
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The condition of exactness insures the existence of a function

f(x,y) such that :

f fM(x y), N(x y)x y
   , , (6)

When the equation is exact, we solve it using the following

steps:

 Check that the equation is indeed exact;

 Write down the system f fM(x y), N(x y)x y
   , ,

 Integrate either the first equation with respect of the

variable x or the second with respect of the variable y. The

choice of the equation to be integrated will depend on how

easy the calculations are. Let us assume that the first

equation was chosen, then we get

(y)f(x y) M(x y)dx  , ,

The function (y) should be there, since in our integration,

we assumed that the variable y is constant.
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 Use the second equation of the system to find the

derivative of (y) . Indeed, we have

f ( M(x y)dx) (y) N(x y)y y
      , ,

which implies

(y) N(x y) ( M(x y)dx)y
    , ,

Note that  is a function of y only. Therefore, in the

expression giving (y) , the variable x should disappear.

Otherwise something went wrong!

 Integrate to find (y) ; then write down the function f(x,y)

 All the solutions are given by the implicit equation

f(x,y)= C

 If you are given an I.V.P., plg in the initial condition to

find the constant C.

You may ask, what do we do if the equation is not exact? In

this case, one can try to find an integrating factor which

makes the given differential equation exact.
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Integrating Factor Technique

Assume that the equation    M(x,y)dx + N(x,y)dy = 0 is not

exact, that is M N
y x

   . In this case we look for a function

u(x,y) which makes the new equation u(x,y) M(x,y)dx +

u(x,y) N(x,y)dy = 0, an exact one. The function u(x,y) (if it

exists) is called the integrating factor. Note that u(x,y)

satisfies the following equation:

M u N uu M u Ny y x x       

This is not an ordinary differential equation since it involves

more than one variable. This is what's called a partial

differential equation. These types of equations are very

difficult to solve, which explains why the determination of

the integrating factor is extremely difficult except for the

following two special cases:

Case 1: There exists an integrating factor u(x) function of x

only. This happens if the expression
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M N
y x

N

   (7)

is a function of x only, that is, the variable y disappears from

the expression. In this case, the function u is given by

y xM Nu(x) exp( dxN ) 

Case 2: There exists an integrating factor u(y) function of y

only. This happens if the expression

N M
x y

M

   (8)

is a function of y only, that is, the variable x disappears from

the expression. In this case, the function u is given by

yxN Mu(x) exp( dyM ) 

Once the integrating factor is found, multiply the old

equation by u to get a new one which is exact. Then you are

left to use the previous technique to solve the new equation.
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Advice: if you are not pressured by time, check that the new

equation is in fact exact!

Let us summarize the above technique. Consider the equation

M(x,y)dx + N(x,y)dy = 0

If your equation is not given in this form you should rewrite

it first.

Step 1: Check for exactness, by computing M Nandy x
 
  , then

compares them.

Step 2: Assume that the equation is not exact, then evaluate

M N
y x

N

  

If this expression is a function of x only, then go to step 3.

Otherwise, evaluate

N M
x y

M

  
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If this expression is a function of y only, then go to step 3.

Otherwise, you can not solve the equation using the

technique developed above!

Step 3: Find the integrating factor. We have two cases:

a) If the expression y xM N
N
 is a function of x only. Then an

integrating factor is given by y xM Nu(x) exp( dxN )  ,

b)If the expression yxN M
M
 is a function of y only, then an

integrating factor is given by yxN Mu(x) exp( dyM ) 
Step 4: Multiply the old equation by u, and, if you can, check

that you have a new equation which is exact.

Step 5: Solve the new equation using the steps described in

the previous section.
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Example 9 : Find solution to
2

2 2
dy 2x 6xy
dx 3y 6x y




Solution:

Since the equation is( 22x 6xy )dx+( 2 23y 6x y )dy=0,

M(x,y)= 22x 6xy , N(x,y) = 2 23y 6x y & M N12xyy x
    ,

then the equation is exact, but f M(x y)x
  , = 22x 6xy , thus

f(x,y) = x2 + 3 x2 y2 + (y) , 22 2f y (y) 3y yy 6x 6x    ,

from which we conclude 2(y) 3y  , so (y) = y3, thus the

solution of the D.E. is f(x,y) = x2 + 3 x2 y2 + y3.

The following example illustrates the use of the integrating

factor technique:

Example 10 : Find the solution to
2

2
dy 3xy y
dx x xy



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Solution:

1) Rewrite the equation to get ( 23xy y )dx+( 2x xy )dy= 0,

hence  M(x,y) = 23xy y and N(x,y) = 2x xy .

(2) We have M N3x 2y 2x yy x,      , which clearly

implies that the equation is not exact.

(3) Let us find an integrating factor. We have y xM N 1
N x
  .

Therefore, an integrating factor u(x) exists and is given by

y xM N 1u(x) exp( dx exp( dx exp(ln x) xN x) )    

(4) The new equation is ( 2 23x y xy )dx + ( 3 2x x y ) dy = 0,

which is exact. (Check it!)

5.2.6 First Order Linear Equation

A first order linear differential equation has the following

form:

dy p(x)y q(x)dx   (9)



Ordinary differential equation

259

The general solution is given by
u(x) q(x) dx C

y(x) ,u(x)


 

where u(x) exp ( p(x)dx)  is called the integrating factor. If

an initial condition is given, use it to find the constant C.

Here are some practical steps to follow:

1) If the D.E. is given as dya(x) b(x)y c(x)dx   , rewrite it in

the form dy p(x)y q(x)dx   , i.e. b(x) c(x)p(x) , q(x)a(x) a(x)  ,

2) Find the integrating factor u(x) exp ( p(x)dx)  ,

3) Evaluate the integral u(x) q(x) dx ,

4) Write the general solution
u(x) q(x) dx C

y(x) ,u(x)


 

5) If you are given an I.V.P., use the initial condition to find

the constant C.

Example 11 : Find the solution to 2y ( tanx )y cos x  =

Solution: Let us use the steps:
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Step 1: There is no need for rewriting the differential

equation. We have 2p(x) tanx, q(x) cos x 

Step 2: The integrating factor is

1u(x) exp ( tanx dx) exp( ln cosx) = cosx 
Step 3: Evaluate u(x) q(x) dx such that:

21 (cos x) dx dx sin xcosxu(x) q(x) dx cos x   
Step 4: The general solution is given by

u(x) q(x) dx C sin x Cy(x) secxu(x)
  

Step 5: In order to find the particular solution to the given

I.V.P., we use the initial condition to find C. Indeed, we have

y(0) = C = 2, therefore the solution is

y(x) = (sin x + 2) cos x.

5.2.7 Bernoulli Equation

A differential equation of Bernoulli type is written as

ndy p(x)y q(x) ydx   (10)
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This type of equation is solved via a substitution. Indeed, let
1 nz y  , then easy calculations give  z` = (1-n) y –n y` which

implies

dz (1 n)p(x)z (1 n)q(x)dx     (11)

This is a linear equation satisfied by the new variable z. Once

it is solved, you will obtain the function 1/1 ny z  . Note that if

n > 1, then we have to add the solution y = 0 to the solutions

found via the technique described above. Let us summarize

the steps to follow:

 Recognize that the differential equation is a Bernoulli

equation. Then find the parameter n from the equation;

 Write out the substitution 1 nz y  ;

 Through easy differentiation, find the new equation

satisfied by the new variable z. You may want to remember

the form of the new equation:

dz (1 n)p(x)z (1 n)q(x)dx    

 Solve the new linear equation to find z;
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 Go back to the old function y through the substitution
1/1 ny z  ;

 If n > 1, add the solution y = 0 to the ones you obtained

above;

 If you have an I.V.P., use the initial condition to find the

particular solution.

Example 12 : Find the solution to 3dy y ydx  

Solution: Perform the following steps:

 We have a Bernoulli equation with n = 3;

 Let 1 3 2z y y   ; 3dz 2y ydx
  

 The new equation satisfied by z is dz 2z 2dx   ,

P(x) = 2,      q(x) = -2;

 This is a linear equation with integrating factor

u(x) exp ( p(x)dx)  2xexp ( 2dx) e  ,

also we  have 2x 2xu(x) q(x) dx 2e dx e    , the general

solution is given by
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2x

2x
-2xu(x) q(x) dx C e Cz(x) 1 C eu(x) e

     ,

but 1/2y z which gives 1/2-2x )y ( 1 C e    

5.3 Problems

I) Solve the following differential equations

1) (x+2y) dx + (2x-y+1) dy = 0

2) y`= 2x -3y+9
6y-4x +1

3) (y + ln(x))dx +( x+y2) dy = 0

4) y`= y + sin(x)

5) y`= 2x +5y
2x + y


6) (3xy+ y2) dx + (x2+xy) dy = 0

7) y`+ (tanx) y = cos2x

8) y` = y + y3
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9) xy` + y = -x3

10) y`+ y/x = -2

11) y` = ex-y

12) y` = 1 + x + y + xy

13) xy` - sin(x)/y = y Ln(x)

14) y`=
x

x
cos y- ye
e xsiny

15) y` =  x3- (4/x)y

16) y` =
2

2
xy + x

y

17) y` = (y/x) + tan(y/x)

18) y` = x(2Lnx+1)/(siny+ ycosy)

19) y` = y x (Hint: put y x = t)

20) y – xy` = a (y2 + y`)

21) y` = y ex - 2ex + y-2

22) y` = xcosx y
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23) y` = -2xy + 2x

24) y` = y tanx – cosx

25) y` =
2

2 2
xy 1+x

1+x 1-x


26) y` = (y/2x) - (xy)3

27)
2 2 2 2

yyx 0
y + x y + x

 

28) y2-xy + x2y`=0

29) 1+y + (2y + 2 y2)y` = 0

30) 1+ y
1+ x + y` = 0

31) 1- 2 2 2 2
yyx 0

x + y x + y
 

32) x2 + y/x + Ln(xy) y` = 0

33) 2x y2 + 4 x3 + 2(x2 + 1) y y` = 0

34) dy / dx - 2 x y = x
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35) dy / dx + y / x = - 2 for x > 0

36) x dy / dx + y = - x3 for x > 0

37) dy / dx + y = 2x + 5

38) y ' = 3 ey x 2

39) y ' = sin x / (y cos y)

40) y ' = -9 x2 y2

41) y` = 1 + 1/ y2

42) y` = y + y3

43) 2 2
d 2t 2
dt 1 t 1 t
y y 

 
, y(0) = 0.4

44) 32 d(cos t sint) cos t 1dt
y y+  , ( ) 04y  

45) d2t t 1dt
y y   , y(2) = 4, t > 0
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46) x d
d

y
x + y = - x

47) d
d

y
x =6xy2 , y(1) = 1/25

48)
23 4 4
2 4

x xy y
   , y(1) = 3

49)
3

21
xyy

x
 


, y(0) = -1

50) t 2d e (sec ) (1 t )dt
y-y y  , y(0) = 0

51) 2 2d(2 1) 9 2 0d
yy x x xyx     , y(0) = -3

52) 2 2d2(3 ) 4 2d
yyx xyx   , y(-1) = 8

53) 2
2
2t 2t (2 ln(t 1)) 0

t 1
y y    


, y(5) = 0

54) 3 33 23 1 (2 3 ) 0xy xyy e y xy e y     , y(0) = 1

55) 3 24y y x yx  , y(2) = -1
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56) -2x 25 ey y y   , y(0) = 2

57) 46 2y y xy   , y(0) = -2

58) 0yy yx   , y(1) = 0

59) d 9.8 0.196dt
v v 

60) 3) (dcos( ) sin( 2cos ) sin( )-1d
yx x y x xx   , 2( ) 34y   , 0 ≤ x

< 2


61) 2ty 2y t t 1     , y(1) = ½

62) 3 45 ( ) 4ty 2y t sin 2t t t     , y( ) = (3/2) 4

63) 2 2 0xyy 4x y    , y(2) = -7

64) 2y` - y = 4 sin3t

65) 2x(y+1) dx – y dy = 0

66) 2(y-1)x2 dy + cscy dx = 0
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67) x secy dx +(1-6y5) dy = 0

68) (x y2 – x) dx + (x2y + y) dy = 0

69) xdy + y Lnx dx = 0

70) (2x-6y+3) – (x-3y+1)dy = 0

71) (x+2y-4) dx - (2x + y -5) dy = 0

72) (x+2y-1) dx + 3(x+2y) dy = 0

73) e-y(y`+1) = xex (Hint: put x+y = u)

74) (x-y)dx + (x-4y)dy = 0

75) (x2- xy + y2) dx – xy dy = 0

76) (y+x y2) dx + ( x + x2y)dy = 0

77) (x2- 2y2) dx + xy dy = 0

78) xy dx + (x2 + y2) dy = 0

79) (x-4) y4 dx – x3(y2 – 3) dy = 0

80) x siny dx + (x2 + 1) cosy dy = 0,   y(1) = 

81) (x2 + 3y) dy + (y + 3x)dy = 0
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82) y` - xy - x2 = 0

83)
y

y
ey xe 2y  


84) (x+ y2) y`+ y = 0

85)
3 x

2 2 x
2xsiny + y ey 0

x cos y 3y e
  



86) y` - y = 2xy3/2

87) (x+y) y` + (y+3x) = 0

88) 3x(xy-2)dx + (x3+2y) dy = 0

89)(3x2+6xy2) + (6 yx2 + 4y2) y` = 0

90) (x+y2)dy+(y-x2) dx = 0

91) (3x2+4xy) dx + (2x2 + 2y) dy = 0

92)
xy
xy

2+ yey 2y xe 


93)
2

2
2xy- yy

x
 

94) (x2 + y) + (ey + x) y` = 0
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95) (2x3- xy2-2y + 3) dx - (x2y + 2x) dy = 0

96) (x+ siny) dx + (xcosy – 2y) dy = 0

97) [ x +
2 2
1

y x
] dx + [ 1-

2 2
x

y y x
] dy = 0

98)
2

3 2
2xcosy+3x yy
x x siny - y

  


99) (y + 2 2y + x ) dx – x dy = 0

100) y` =
2

2 2

(x/y)

(x/y) (x/y)2 2 2
2xye

y y e 2x e 

101)
3 3

2
y -2xy

xy
 

102)
4 4

3
2y + xy

xy
 

103) (x2- 3y2) dx + (2xy) dy = 0

104) 2 2y + x dx = x dy – y dx

105) (y - xy2) dx + x dy = 0

106) (y2 + 2xy) dx - x2 dy = 0
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107) y+1y x +2y 

108)
2(

2(

2x + ycos y/x)y
xcos y/x)

 

109)
2(

2(

x + ysin y/x)y
xsin y/x)

 

110) y` = 3x e(x+2y)/y

111) (9x2+2y2 + 2) dx + (4xy + 12 y2) dy = 0

112) (cosx) y` + y = sinx

113) (x+1) y` + y =  2x (x+1)

114) x2 y`+ x y = x2 sinx

II) Prove that every separable differential equation is exact

(Hint: y` = g(x) f(y))

III) An RL circuit has an emf of 5 V, a resistance of 50  , an

inductance of 1 H, and no initial current. Find the current in

the circuit at any time t. Distinguish between the transient and

steady-state current.
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Answer

The formula is: R i + L di
dt = v, where R is the resistance and

L is the inductance, i is the current passes through the circuit,

v is voltage source.

After substituting: 50i + 1 di
dt = 5, solve this D.E., so that i(t)

is called transient current and i(0) is called steady-state

current.

IV) A series RL circuit with R = 50  and L = 10 H has a

constant voltage V = 100 V applied at t = 0 by the closing of

a switch. Find

(a) The equation for i (you may use the formula rather than

DE),

(b) The current at t = 0.5 s

(c) The expressions for VR and VL

(d) The time at which VR = VL
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V) Solve (x+y) dx + xdy = 0 by two different methods.

VI) Choose the correct answer

A) The general solution of the first order differential

equation t2y` - 2ty = 3 is

B) For the differential equation y` + 2(cosy) y = 1

Which of the following is true?
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C) For the differential equation x + y+2y x - y  

Which of the following is true?

a) The differential equation is non linear and homogeneous

b) The differential equation is linear and non homogeneous

c) The differential equation is non linear and exact

d) The differential equation is non homogeneous and not

exact

D) For the differential equation y-2x(x +1)y x +1  

Which of the following is true?

a) The differential equation is non linear and homogeneous

b) The differential equation is linear and non homogeneous

c) The differential equation is linear and non exact

d) The differential equation is non linear and exact
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E) For the differential equation
2 2

2
9x +2yy
4xy+12y

  

Which of the following is true?

a) The differential equation is linear and homogeneous

b) The differential equation is non linear and non

homogeneous

c) The differential equation is linear and exact

d) The differential equation is non linear and exact

F) For the differential equation
2

2
xy + xy
x y + y

  

Which of the following is true?

a) The differential equation is linear and homogeneous

b) The differential equation is linear and non homogeneous

c) The differential equation is separable and non linear

d) The differential equation is non linear and exact
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5.4 Homogeneous Higher Order Linear D.E.

As with 2nd order differential equations we can’t solve a non

homogeneous differential equation unless we can first solve

the homogeneous differential equation. We’ll also need to

restrict ourselves down to constant coefficient differential

equations as solving non-constant coefficient differential

equations is quite difficult and so we won’t be discussing

them here. Likewise, we’ll only be looking at linear

differential equations. So, let’s start off with the following

differential equation,
(n) (n 1)

n n 1 1 0a y a y ... a y a y 0
     (12)

Now, assume that solutions to this differential equation will

be in the form y = ert and plug this into the differential

equation and with a little simplification we get,

ert n n 1
n n 1 1 0(a r a r ... a r a ) 0

     (13)

and so in order for this to be zero we’ll need to require that
n n 1

n n 1 1 0a r a r ... a r a 0
     (14)
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This is called the characteristic polynomial equation and its

roots solutions will give us the solutions to the differential

equation. We know that, including repeated roots, an nth

degree polynomial (which we have here) will have n roots.

So, we need to go through all the possibilities that we’ve got

for roots here.

This is where we start to see differences in how we deal with

nth order differential equations versus 2nd order differential

equations. There are still the three main cases: real distinct

roots, repeated roots and complex roots (although these can

now also be repeated as well see). In 2nd order differential

equations each differential equation could only involve one

of these cases. Now, however, that will not necessarily be

the case. We could very easily have differential equations

that contain each of these cases.

For instance suppose that we have an 9th order differential

equation. The complete list of roots could have 3 roots which

only occur once in the list (i.e. real distinct roots), a root with

multiplicity 4 (i.e. occurs 4 times in the list) and a set of

complex conjugate roots (recall that because the coefficients
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are all real complex roots will always occur in conjugate

pairs).So, for each nth order differential equation we’ll need

to form a set of n linearly independent functions (i.e. a

fundamental set of solutions) in order to get a general

solution. In the work that follows we’ll discuss the solutions

that we get from each case but we will leave it to you to

verify that when we put everything together to form a general

solution that we do indeed get a fundamental set of solutions.

Recall that in order to this we need to verify that the

Wronskian is not zero.

So, let’s get started with the work here. Let’s start off by

assuming that in the list of real distinct roots of the

characteristic equation we have r1, r2, …, rk and they only

occur once in the list. The solution from each of these will

then be, 1 2 kxx x rr re , e , ...., e .

Now let’s take a look at repeated roots. The result here is a

natural extension of the work we saw in the 2nd order case.

Let’s suppose that r is a root of multiplicity k (i.e. r occurs k

times in the list of roots). We will then get the following k
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solutions to the differential equation, rx rx k-1 rxe , xe ,..., x e . So,

for repeated roots we just add in a x for each of the solutions

past the first one until we have a total of k solutions. Again,

we will leave it to you to compute the Wronskian to verify

that these are in fact a set of linearly independent solutions.

Finally we need to deal with complex roots; the biggest issue

here is that we can now have repeated complex roots for 4th

order or higher differential equations. We’ll start off by

assuming that r i occurs only once in the list of

roots. In this case we’ll get the standard two solutions,
x xe cos x, e sin x   . Now let’s suppose that r i has a

multiplicity of k (i.e. they occur k times in the list of

roots). In this case we can use the work from the repeated

roots above to get the following set of 2k complex-valued

solutions, ( + i)x ( + i)xe , xe ,...    ( + i)xk-1x e   . The problem here

of course is that we really want real-valued solutions. So,

recall that in the case where they occurred once all we had to

do was use Euler’s formula on the first one and then take the

real and imaginary part to get two real valued
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solutions. We’ll do the same thing here and use Euler’s

formula on the first set of complex-valued solutions above,

split each one into its real and imaginary parts to arrive at the

following set of 2k real-valued solutions
x x xe cos x, e sin x, xe cos x,     xxe sin x,  k-1 x..., x e cos x, 

k-1 xx e sin x  . Once again we’ll leave it to you to verify that

these do in fact form a fundamental set of solutions. Before

we work a couple of quick examples here we should point out

that the characteristic polynomial is now going to be at least a

3rd degree polynomial and finding the roots of these by hand

is often a very difficult and time consuming process and in

many cases if the roots are not rational (i.e. in the form p
q ) it

can be almost impossible to find them all by hand. To see a

process for determining all the rational roots of a polynomial

check out the finding zeros of polynomials page in my

Algebra notes. In practice however, we usually use some

form of computation aid such as Maple or Mathematica to

find all the roots. So, let’s work a couple of example here to

illustrate at least some of the ideas discussed here.
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Example 13: Solve the following I.V.P.

y 5y 22y 56y 0, y(0) 1, y y       

Solution: The characteristic equation is,

r3- 5 r2- 22r +56 = (r+4) (r-2) (r-7), from which r = -4, r = 2,

r = 7, so we have three real distinct roots hear and so the

general solution is y(t) = c1e-4x + c2e2x+ c3e7x

Differentiating a couple of times and applying the initial

conditions give the following system of equations that we’ll

need to solve in order to find the coefficients.

1= y(0) = c1 + c2 + c3, -2 = y  (0) = -4c1 + 2c2 + 7c3 ,

- 4 = y  (0) = 16c1 + 4c2 + 49c3, thus c1= 14
33 , c2 = 13

15 ,

c3 = 16
55
 . The actual solution is then, y(t) = 14

33 e-4x + 13
15e2x +

16
55
 e7x.
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Example 14: Solve the following differential equation.

2y 11y 18y 4y 8y 0       

Solution: The characteristic equation is

2r4 +11r3+ 18 r2+4r - 8 = (2r-1) (r + 2)3 = 0

And so we have two roots here, r1 = 1/2 and r2 = -2 which is

multiplicity of 3. Remember that we’ll get three solutions for

the second root and after the first we add x’s only the solution

until we reach three solutions, then the general solution is,

y(t) = c1 (1/2)xe + e-2x [c2+ c3x+ c4x2]

Example 15: Solve the following differential equation.

(5) 12y 104y 408y 1156y 0y        

Solution: The characteristic equation is
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5 4 3 2 2 2r 12r 104r 408r 1156r r(r 6r 34) 0       

So, we have one real root r = 0 and a pair of complex roots r

= -3 5i each with multiplicity 2. So, the solution for the real

root is easy and for the complex roots we’ll get a total of 4

solutions, 2 will be the normal solutions and two will be the

normal solution each multiplied by x. The general solution

is:

y(t) = c1 + e-3x [c2 cos(5x) + c3 sin(5x)] + xe-3x [c4 cos(5x) + c5

sin(5x)]

Example 16: Solve the following differential equation.

(5) 15y y 84y 220y 275y y 0       

Solution: The characteristic equation is, 4 35 15r 84rr  
2220r 22)275r 125 ( 1)(r 5 4r 5) 0r (r      

In this case we’ve got one real distinct root r = 1 and double

root r = 5 and a pair of complex roots, r = 2  i that only

occur once, hence the general solution is then,
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y(x) = c1 et + e5x [c2 + c3x ] + e2x [c4cos(x) + c5sin(x)]

Example 17: Solve the following differential equation

y 16y 0  

Solution: The characteristic equation is 4r 16 0  , from

which i /( +2 k) 4r 2 e  = , k=0,1,2,3, thus the roots are r = i /42e ,

i3 /4 i5 /4 i7 /42e , 2e , 2e   , thus r = 2 i 2  , r = 2 i 2  .

The general solution is then, y(t) =
2)x2 (-x

1 2 1 22 2 2 2e (c cos( )x c sin( )x) +e (c cos( )x c sin( )x) 

5.5 Non Homogeneous Linear second Order D.E.

It’s now time to start thinking about how to solve non

homogeneous differential equations. A second order, linear

non homogeneous differential equation is

y p(x) y q(x)y g(x)    (15)
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g(x) is a non-zero function. Note that we didn’t go with

constant coefficients here because everything that we’re

going to do in this section doesn’t require it. Also, we’re

using a coefficient of 1 on the second derivative just to make

some of the work a little easier to write down. It is not

required to be a 1. Before talking about how to solve one of

these we need to get some basics out of the way, which is the

point of this section. First, we will call

y p(x)y q(x)y 0    (16)

(16) is the associated homogeneous differential equation to

(15). Now, let’s take a look at the following theorem.

Theorem 1

Suppose that Y1(x)and Y2(x) are two solutions to (15) and

that y1(x)and y2(x)are a fundamental set of solutions to the

associated homogeneous differential equation (16) then,

Y1(x) – Y2(x)is a solution to (16) and it can be written as:

Y1(x) – Y2(x)= c1 y1(x) + c2 y2(x) (17)
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Proof

Note the notation used here. Capital letters referred to

solutions to (15) while lower case letters referred to solutions

to (16). This is a fairly common convention when dealing

with non homogeneous differential equations. This theorem

is easy enough to prove so let’s do that. To prove that

Y1(x) - Y2(x) is a solution to (16) all we need to do is plug

this into the differential equation and check it. We used the

fact that Y1(x) and Y2(x) are two solutions to (15) such that

1 1 1Y p(x) Y q(x)Y g(x)   , 2 2 2Y p(x) Y q(x)Y g(x)   ,

therefore 1 2 1 2 1 2(Y Y ) (Y Y ) q(x) (Y Y )p(x)    

= 1 1 2 21 2 qY p(x) Y q(x) Y (Y p(x) Y (x)Y )      

= g(x) - g(x) = 0
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So, we were able to prove that the difference of the two

solutions is a solution to (16).

Proving that Y1(x) – Y2(x)= c1 y1(x)+ c2 y2(x)  is even easier.

Since y1(t) and y2(t) are a fundamental set of solutions to (16)

we know that they form a general solution and so any

solution to (16) can be written in the form

y(t)= c1 y1(x)+ c2 y2(x).

Well, Y1(x) - Y2(x) is a solution to (16), as we’ve shown

above, therefore it can be written as Y1(x) –Y2(x) = c1 y1(x) +

c2 y2(x), So, what does this theorem do for us? We can use

this theorem to write down the form of the general solution to

(15). Let’s suppose that y(t) is the general solution to (15)

and that YP(x)is any solution to (15) that we can get our

hands on. Then using the second part of our theorem we

know that y(x) – Yp(x)= c1 y1(x) + c2 y2(x), where y1(x) and

y2(x) are a fundamental set of solutions for (5). Solving for

y(x) gives,
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y(x) = c1 y1(x)+ c2 y2(x) + Yp(x) (18)

We will call

yc(t) = c1 y1(x)+ c2 y2(x)                                  (19)

is the complimentary solution and YP(t) a particular solution.

The general solution to a differential equation can then be

written as.

y(x) = yc(x) + Yp(x) (20)

So, to solve a non homogeneous differential equation, we will

need to solve the homogeneous differential equation, (16),

which for constant coefficient differential equations is pretty

easy to do, and we’ll need a solution to (15). This seems to be

a circular argument. In order to write down a solution to (15)

we need a solution. However, this isn’t the problem that it

seems to be. There are ways to find a solution to (15). They

just won’t, in general, be the general solution. In fact, the

next two sections are devoted to exactly that, finding a

particular solution to a non homogeneous differential
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equation. There are two common methods for finding

particular solutions: Undetermined Coefficients and Variation

of Parameters. Both have their advantages and

disadvantages. g(x) may be eax, cosax, sinax, xn, xn cos(ax),

xn sin(ax), eax cos(ax), eax sin(ax), therefore we will study the

particular solution for all these functions using the

D - operator method.

In general the non homogeneous higher order differential

equation will be in the form

(n) (n 1) (n 2)
n n 1 n-2 1 0...A y A y A y A y A y g(x) 

      (21)

This equation has another form as follows

n n 1 n 2
n n 1 n-2 1 0... )(A D A D A D A D A y g(x) 

      (22)
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5.6 D - Operator

D = d
dx is called differential operator satisfying the

following properties:

 D(a f(x ) + b g(x)) = a D f(x) + b Dg(x);

 nD f(x) = (n)f (x) ;

 ( nD + mD )f(x) = (n)f (x) + (m)f (x) ;

 1
D is called inverse operator of D where

1 f(x) f(x) dxD   ;

 ax ax1 1e e , (a) 0(D) (a)   
, (D) is a polynomial of

differential operator D;

 2
2 2

1 1cos(ax) cos(ax), ( a ) 0
(D ) ( a )

   
  

;

 2
2 2

1 1sin(ax) sin(ax), ( a ) 0
(D ) ( a )

   
  

;

 ax ax
2 2

1 1e cos(ax) e cos(ax)
(D ) [(D +a) ]


 

;
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 ax ax
2 2

1 1e sin(ax) e sin(ax)
(D ) [(D +a) ]


 

Example 18: Evaluate

i) D(3x2), 3 4D (x ) , 1 xD , (D+5)2(6x3), ii) 2x
2

1 e
D 5D 3 

,

iii) 2
1 cos(4x)

D 3
, iv) 2

1 sin(5x)
D 7

Solution:

i) D(3x2) = 6x , 3 4D (x ) 24x ,
21 xx x dxD 2  ,

(D+5)2(6x3 ) = (D2+10D+25) (6x3 ) = 36x+180 x2+150x3

ii)
2x

2x 2x
2 2

1 1 ee e 11D 5D 3 2 5(2) 3





  

iii) 2 2
cos(4x)1 1cos(4x) cos(4x) 13D 3 4 3

  
  

iv) 2 2
sin(5x)1 1sin(5x) sin(5x) 18D 7 5 7

 
  



Ordinary differential equation

293

The solution of equation (22) has 2 parts homogeneous and

particular parts.

5.7 Particular integral

We will study the particular solution of nth order differential

equation with constant coefficient (equation 22) if

a) g(x) = eax such that

(n) (n 1) (n 2)
n n 1 n-2 1 0

ax...A y A y A y A y A y e 
      (23)

It can be written in the form

n n 1 n 2
n n 1 n-2 1 0

ax...(A D A D A D A D A )y e 
      (24)

We have to get first the homogeneous part of the solution

yc(t)  so that

(n) (n 1) (n 2)
n n 1 n-2 1 0...A y A y A y A y A y 0 

     

The characteristic equation is

n n 1 n 2
n n 1 n-2 1 0...A r A r A r A r A 0 

     
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So that we can get the roots of the equation from which we

get the homogeneous part of the solution.

To get the particular solution, we have to follow these steps

(1) Replace y(n) by Dny, in equation (23)

(2) We will get

n n 1 n 2
n n 1 n-2 1 0

ax...(A D A D A D A D A )y e 
     

(3) Hence the particular solution is expressed as

but ax ax1 1e e(D) (a) 
, hence

Yp(x) =
n n 1 n-2 1 0

ax
n-1 n-2n

1
( ( ( ... (

e
A a) A a) A a) A a) A    

(4) Since the solution is y(x) = yc(x) + Yp(x)

If n n 1 n-2 1 0
n-1 n-2n( ( ( ... (A a) A a) A a) A a) A     = 0, then

apply the following theorem.

n n 1 n -2 1 0
n-1 n-2

ax
n ...

1Yp(x) = e
A D A D A D A D A    
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Theorem 2

Let be a polynomial of differential operator D and f(x)

be differentiable function, then

ax ax1 1e f(x) e f(x)(D) (D+a) 

Proof

Let 1 f(x) = g(x), i.e. f(x) = (D +a) g(x)(D +a) 
, but (D) axe

g(x) = axe (D+a) g(x)= axe f(x), thus axe g(x) = ax1 e f(x)(D)

, hence ax 1e f(x)(D +a)
= ax1 e f(x)(D)

.

Example 19: Find the particular solution for the differential

equation y``-8y`+16y= xe4x

Solution

2 2 2

3
4x 4x 4x 4x1 1 1 xe e x = e x e ( )6(D-4) (D+4-4) Dx =

(D)
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Example 20: Solve the differential equation

5xy 3y 4y e    

Solution: The characteristic equation is 2r 3r 4 0   

(r- 4)(r+1) = 0 r = 4, -1,therefore yc = c1e4x + c2e-x and

Yp(x) =
5x

5x 5x
2 2

1 1 ee e 6D 3D-4 5 3(5)-4
 

 
.

Hence the solution is y(x) = yc + yp = c1e4x + c2e-x +
5xe
6

For the D.E. ax(D)y e  , yp = ax ax1 1e eD) a)  .

If a) = 0, thus we treat this problem such that

yp = ax ax1 1e e (1)D) D a)   .

This case will be discussed in the following examples
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Example 21: Solve the differential equation

2xy 4y 4y e    

Solution: It is so easy to get yc = c1e2x + c2xe2x as the roots of

characteristic equation 2r 4 r 4 0   are r = -2, -2 and

Yp(x) = 2x 2x 2x 0x
2 2 2

1
( )

1 1e e e e
D 4D+4 (D-2) D+2-2

 


Example 22: Solve the differential equation

3xy 4y 3y e    

Solution: yc = c1e3x + c2ex & Yp(x) = 3x1 e(D-3)(D-1)

= 3x1 e2(D-3)
3 3 3

0
x x xx( )e 1 e 1 x ee (1)D2 2 2(D+3-3)   .

b) g(x) = cos(ax) such that

(n) (n 1) (n 2)
n n 1 n-2 1 0...A y A y A y A y A y cos(ax) 

      (25)

2
2x 2x

2
1 xe (1) e2D

 
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It can be written in the form

n n 1 n 2
n n 1 n-2 1 0...(A D A D A D A D A )y cos(ax) 

      (26)

After we get the homogeneous part of (26), such that the

characteristic equation is

n n 1 n-2 1 0
n n 1 n 2 ...A r A r A r A r A 0

      

To get the particular solution, we have to put (D) as function

of D2 such that if n is even in (26), and then the equation is

expressed as 2 2
n n 1

(n-2)/2n/2((A D ) A D(D )  2
n-2

(n-2)/2A (D )

2... 2 1 0A D A D A )y cos(ax)   

Therefore Yp(x) =

(n-2)/2 (n-2)/2n/22 2 2
n n 1 n-2 1 0

1 cos(ax)
A (-a ) A D(-a ) A (-a ) ... A D A    

If n is odd in (26), then the equation is expressed as
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2 2 2
n n 1 n-2 1

0

(n-1)/2 (n-1)/2 (n-3)/2
...( ) ( ) ( )(A D D A D A D D A D

A )y cos(ax)
   

 

Thus Yp(x) =

(n-1)/2 (n-1)/22 2
n n 1 1 0

1 cos(ax)
A D(-a ) A (-a ) ... A D A   

Similarly For g(x) = sin(ax)

If n is even, then Yp(x) =

2 2
n n 1 1 0

(n-2)/2n/2
1 sin(ax)

A (-a ) A D(-a ) ... A D A   

If n is odd, then Yp(x) =

2 2
n n 1 1 0

(n-1)/2 (n-1)/2 )1 sin(ax
A D(-a ) A (-a ) ... A D A   

Note

For Yp(x) = n n 1
n n 1 1 0

1 cos(ax)
A D A D ... A D A

   
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If n is even and

(n-2)/2n/22 2
n n 1 1 0A (-a ) A D(-a ) ... A D A    =0,

Or if n is  odd and

(n-1)/2 (n-1)/22 2
n n 1 1 0A D(-a ) A (-a ) ... A D A    = 0

Then put cos(ax) = Re (eiax) to evaluate Yp(x) such that:

Yp(x) = n n 1
n n 1 1 0

1 cos(ax)
A D A D ... A D A

   

= iax
n n 1

n n 1 1 0

1 Re (e )
A D A D ... A D A

   

Therefore Yp(x) =

0x

n n 1 1 0
n-1n

iax
...

)
( ) ( ) ( )

1Re(e e
A D+ia A D+ia A D+ia A   

Thus Yp(x) =

n n 1 1 0
n-1n

iax
...

)
( ) ( ) ( )

1Re(e
A 0+ia A 0+ia A 0+ia A   
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=
n n 1 1 0

n-1n
iax

...
)

( ) ( ) ( )
1Re(e

A ia A ia A ia A   

Similarly, if

Yp(x) = n n 1 n 2
n n 1 n-2 1 0

1 sin(ax)
A D A D A D ... A D A 

    

If n is even and

2 2
n n 1 1 0

(n-2)/2n/2A (-a ) A D(-a ) ... A D A    = 0

Or if n is odd and

(n-1)/2 (n-1)/22 2
n n 1 1 0A D(-a ) A (-a ) ... A D A    = 0

Then put  sin(ax) = Im(eiax) to evaluate Yp(x) such that :

Yp(x)

= n n 1 n 2
n n 1 n-2 1 0

1 sin(ax)
A D A D A D ... A D A 

    

= iax
n n 1 n 2

n n 1 n-2 1 0

1 Im (e )
A D A D A D ... A D A 

    
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Therefore Yp(x)

0x

n n 1 1 0
n-1n

iax
...

)
( ) ( ) ( )

1Im(e e
A D+ia A D+ia A D+ia A   

Thus Yp(x)

n n 1 1 0
n-1n

iax
...

)
( ) ( ) ( )

1= Im(e
A 0+ia A 0+ia A 0+ia A   

=
n n 1 1 0

n-1n
iax

...
)

( ) ( ) ( )
1Im(e

A ia A ia A ia A   

Example 23: Solve the D.E. y 4y cos4x  

Solution: It is so easy to get yc = c1 cos2x + c2 sin2x, since

the roots of characteristic equation r2 + 4 = 0 are r 2i  and

Yp(x) = 2
1 1 1cos4x = cos4x = cos4x-16 4 -12D 4 

.

Example 24: Solve the D.E. y 4y 8y cos2x    

Solution: Since the characteristic equation is   r2+4r +8 =0,

then the roots are r 2 2i   , thus yc=e-2x(c1 cos2x+c2 sin2x)
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and Yp(x) = 2
1 1cos4x = cos4x-16 4D+8D 4D+8 

1= cos4x4(D-2) 2
(D+2) 4sin4x +2cos4x= cos4x 4(-16-4)4(D -4)



2sin 4x -cos4x
40

c) g(x) = xm such that

(n) (n 1) (n 2)
n n 1 n-2 1 0

m...A y A y A y A y A y x 
      (27)

It can be written in the form

n n 1 n 2
n n 1 n-2 1 0

m...(A D A D A D A D A )y x 
      (28)

From eq. 28 , we can get the particular solution, as follows

Yp(x) =
0 n n 1 n-2 1

0

n-1 n-2
m

n
1 1

...
xA A D A D A D A D1 A

[ ]
   

,

=
1n n 1 n-2 1

0 0

n-1 n-2n
m...1 A D A D A D A D1 xA A[ ]   

Note: The expansion depends on m, i.e. if m=1, then
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1n n 1 n-2 1 1

0 0

n-1 n-2n ...A D A D A D A D A D1 [1 ]A A[ ]     

Example 25: Solve the D.E. 2y 4y 3y x   

Solution: Since the characteristic equation is   r2+4r +3 =0,

then the roots are r 1,3 , thus yc= c1ex + c2e3x and Yp(x) =

12 2 2
2

2 2
1 1 1 D 4Dx = ( )x (1 ) x3 3 3D 4D+3 D 4D

3

1
1

 
 

2

2 2

2
2 2

2 2

...1 D 4D D 4D(1 )x3 3 3

1 D 4D 16D 1 2 8x 32(1 )x (x )3 3 9 3 3 9

   
   
      

       
       
             

 

  

  

   

= 21 8x 26(x )3 3 9 

Example 26: Solve the D.E. y 4y cos2x  

Solution: Since the characteristic equation is  r2 + 4=0, then

the roots are r 2i  , thus  yc = (c1 cos2x + c2 sin2x)
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and Yp(x) = 2 2
i2x )1 1cos2x = Re(e

D 4 D 4 

2 2
i2x 0x i2x 0x) )1 1Re( Re(

(D+2i) 4 D 4iD
e e e e 

 

= i2x 0x i2x1 1Re(e ) e Re(e ) x(D 4i)D (D 4i) 

i2xRe(e ) 1= x4i iD(1- )4

i2x -1( )Re iD(1- ) x44i
e

i2x(i )-Re iD= (1+ )x4 4
e i2x i2x(i ) ( )( + ) = ( - )-Re e i -Re e 1= x ix4 4 4 4

= ( ) ( - ) =-Re cos2x +i sin2x 1 xsin2x cos2xix4 4 4 16

d) g(x) = eax cosbx such that

(n) (n 1) (n 2)
n n 1 n-2 1 0

ax...A y A y A y A y A y e cosbx 
      (29)

It can be written in the form

n n 1 n-2 1 0
n-1 n-2n ax...(A D A D A D A D A )y cosbxe      (30)
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From eq. (30) and according to theorem 2, we can get the

particular solution, as follows

Yp(x)

= n n-1 n-2
n n 1 n-2 1 0

ax1 e cos(bx)
A D A D A D ... A D A    

=
n n 1 1 0

n-1n
ax 1

...
e cos(bx)

A (D +a) A (D +a) A (D +a) A   

Example 27: Solve the D.E. 3xy 5y y cos2xe   

Solution: The characteristic equation is 2r 5r 6 0   

(r+2)(r+3) = 0  r = -2, -3, thus yc = c1e-2x + c2e-3x & Yp(x) =

2
3x1 e cos2x

D 4D+6
= 3x

2
1e cos2x

(D+3) 4(D+3)+6

2 2
3x 3x

)
1 1e cos2x e cos2x

D 10D+27 (-2 10D+27
 

 

2
3x 3x (10D-23)1e cos2x = e cos2x10D+23 100D -529



2
3x

)
( 20sin2x -23cos2x)= e

100( 2 -529



3x (20sin 2x +23cos2x)= e 929
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The same steps are followed if g(x) = eax sinbx except cosbx

is replaced by sinbx.

Example 28: Solve the D.E. -xy y e sin3x  

Solution: The characteristic equation is 2r 9 0   r 3i  ,

thus  yc =  (c1 cos3x + c2 sin3x) and

2 2
-x -x1 1Yp(x) = e sin3x = sin3x

D +9 (D-1) 4(D-1)+9
e



-x
2 2

-x 1 1= e sin3x = e sin3x
D 2D+6 D 2D+6 

-x
2 2

-x -x = )1 1 2D+3= sin3x = sin3x e ( sin3x2D-3-3 2D+6 4D -9
e e



2
-x -x) )

( )
6cos3x +3sin3x 2cos3x +sin3x= e ( ( 154 -3 -9

e 

e) g(x) = eax xm such that

(n) (n 1) (n 2)
n n 1 n-2 1 0

max...A y A y A y A y A y e x 
      (31)



Ordinary differential equation

308

It can be written in the form

n n 1 n-2 1 0
n-1 n-2n ax m...(A D A D A D A D A )y e x      (32)

From eq. (32) , we can get the particular solution, as follows

Yp(x) =
n n 1 n-2 1 0

m
n-1 n-2n

ax1
...A D A D A D A D A

xe
    

=
n n 1 1 0

n-1
m

n
ax 1

...
e x

A (D +a) A (D +a) A (D +a) A   

= m

0 n n 1 1

0

n-1

ax

n
1

...
( )e xA A (D+a) A (D+a) A (D+a)1 A

  

= n n 1 1

0 0

n-1nax 1 m...A (D+a) A (D+a) A (D+a)e 1 xA A( )  

Example 29: Solve the D.E. 3x 2y y y e x   

Solution: The characteristic equation is 2r 6r 9 0   

r = -3, -3, thus yc = c1 e-3x + c2 xe-3x,
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Yp(x) = 2
2 2

3x 3x 21 1e x = x
D +6D+9 (D+3) 6(D+3)+9

e


2
3x

3x 2 2 2
2 2

3x ( )1 1 e D= x = e x 1 x36 6D 12D+36 (D+6)
e  



23x
2...e 2D 3D(1 )x36 6 36   2

3x
)e 2x 1(x36 3 6  .

5.8 Variation of Parameter

The method of Variation of Parameters is a much more

general method that can be used in many more cases.

However, there are two disadvantages to the method. First,

the complimentary solution is absolutely required to do the

problem. This is in contrast to the method of undetermined

coefficients where it was advisable to have the

complimentary solution on hand, but was not required.

Second, as we will see, in order to complete the method we

will be doing a couple of integrals and there is no guarantee

that we will be able to do the integrals. So, while it will

always be possible to write down a formula to get the

particular solution, we may not be able to actually find it if
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the integrals are too difficult or if we are unable to find the

complimentary solution. We’re going to derive the formula

for variation of parameters. Assume non homogeneous 2nd

order D.E. is

( ) ( ) ( ) ( )p x y q x y r x y g x     (33)

Let its complimentary solution is

yc(x) = c1 y1(x)+ c2 y2(x)

Remember as well that this is the general solution to the

homogeneous differential equation.

( ) ( ) ( )p x y q x y r x y 0    (34)

Also recall that in order to write down the complimentary

solution we know that y1(x) and y2(x) are a fundamental set

of solutions. What we’re going to do is see if we can find a

pair of functions, u1(x) and u2(x) so that

Yp(x) = u1(x) y1(x) + u2(x) y2(x) (35)
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will be a solution to (33). We have two unknowns here and

so we’ll need two equations eventually. One equation is

easy. Our proposed solution must satisfy the differential

equation, so we’ll get the first equation by plugging our

proposed solution into (33). The second equation can come

from a variety of places. We are going to get our second

equation simply by making an assumption that will make our

work easier. We’ll say more about this shortly. So, let’s

start. If we’re going to plug our proposed solution into the

differential equation we’re going to need some derivatives so

let’s get those. The first derivative is

1 1 2 2P 1 1 2 2Y (x) = u (x)y (x) u (x) y (x) u (x)y (x) (x) y (x)u      

Here’s the assumption. Simply to make the first derivative

easier to deal with we are going to assume that whatever

u1(x) and u2(x) are they will satisfy the following.

1 1 2 2u (x)y (x) u (x)y (x) 0   (36)
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Now, there is no reason ahead of time to believe that this can

be done. However, we will see that this will work out. We

simply make this assumption on the hope that it won’t cause

problems down the road and to make the first derivative

easier so don’t get excited about it. With this assumption the

first derivative becomes.

1 2P 1 2Y (x) = (x) y (x) (x) y (x)u u   (37)

The second derivative is then,

1 2P 1 1 1 2 2 2Y (x) = u (x) y (x) u (x)y (x)+ u (x) y (x)+u (x)y (x)      

Plug the solution and its derivatives into (33) such that

1 2 1 21 1 1 2 2 2 1 2[ ] (x)[ ]p(x) u y y + u y +u y q y yu u u         

1 1 2 2r(x)[u y + u y ] g(x) 
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Rearranging a little gives the following.

1 1 2 2 1 1 1 1

2 2 2 2

(x)p(x)[u y u y ] u [ p(x)y q(x)y + r(x)y ]

u (x)[ p(x)y q(x)y + r(x)y ] g(x)

     

 

  

  

Now, both y1(x) and y2(x) are solutions to (34) and so the

second and third terms are zero. Acknowledging this and

rearranging a little gives us,

1 21 1 2 2(x)[ ]p u y u y u (x)[0] u (x)[0] g(x)     

Therefore

1 1 2 2
g(x)u y u y p(x)

     (38)

We’ve almost got the two equations that we need. Before

proceeding we’re going to go back and make a further

assumption. The last equation (38), is actually the one that

we want, however, in order to make things simpler for us we

are going to assume that the function p(x) = 1.
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In other words, we are going to go back and start working

with the D.E. ( ) ( )p(x)y q(x) y r x y g x    . If the coefficient

of the second derivative isn’t one divide it out so that it

becomes a one. The formula that we’re going to be getting

will assume this! Upon doing this the two equations that we

want so solve for the unknown functions are

1 21 2u y u y 0   (39)

1 2 21u y u y g(x)     (40)

Note that in this system we know the two solutions and so the

only two unknowns here are 1u and 2u . Solving this system

is actually quite simple. First, solve (39) for 1u and plug this

into (40) and do some simplification.

2 2
1

1

u yu y


   (41)
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2

1

1 2

1

1

2 2 1
1 2 2 2 2

2 1
2

( )

( )

u y y yy u y g(x) u y g(x)y y
y y y yu g(x)y







    

 


     



1

1
2

2 2 1

y g(x)u
y y y y


 

(42)

So, we now have an expression for 2u . Plugging this into

(28) will give us an expression for 1u .

1 2

2
1

2 1

y g(x)u
y y y y


   (43)

Next, let’s notice that ,1 2 2 1 2 1W(y y ) y y y y 0   

Recall that y1(x) and y2(x) are a fundamental set of solutions

and so we know that the Wronskian won’t be zero!

Finally, all that we need to do is integrate (42) and (43)  in

order to determine what u1(x) and u2(x) are. Doing this gives,
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1 2

2
,1

y g(x)u x dxW(y y )( ) ,
1 2

1
,2

y g(x)u (x) dxW(y y )  (44)

So, provided we can do these integrals, but the particular

solution to the D.E. is  Yp (x) = u1(x) y1(x)+ u2(x) y2(x), thus

Yp (x) =
1 2,

2
1

y g(x)y dxW(y y )  +
1 2,

1
2

y g(x)y dxW(y y ) (45)

Example 30: Solve y y y coshx  

Solution: The characteristic equation is 2r 4r 4 0   

r = -2, -2, thus yc =  (c1 e-2x + c2 x e-2x) & y1(x) = e-2x ,

y2(x) = xe-2x, thus , -4x
1 2 2 1 2 1W(y y ) y y y y e   , g(x) = coshx

2

1 2,
y g(x) dxW( )y y =

2x x -x-2x
-4x

( )
2

x e e ex e cosh x dx dx
e

 

3x xx (e e ) dx2
 

3x 3xx x1 e e[x( e ) ( e ]2 3 9 )   

1

1 2,
y g(x) dxW( )y y =

2x x -x-2x

-4x
( )

2
 e e e e cosh x dx dx

e
 
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3x x 3x
x(e e ) 1 edx ( e )2 2 3

  

But

2p 1
1 2, )

y g(x)Y  (x) = y dxW(y y  +
1 2

1
2 ,

y g(x)y dxW(y y )

= -
-2xe
2

3x 3x
x xe e[x( e ) ( e ]3 9 )   +

-2x 3x
xx e  e[ e ]2 3 

5.9 Problems

I) Solve the following differential equations

1) y`` + 2y` + 2y = ex sin2(2x)

2) y`` + y = sec(x)

3) y```+ y``-y`-y = ex

4) y`` + y = 1+ tanx

5) y```` + y = 0

6) 16y``+ 8y` + y = 0

7) y`` + 5y` + 6y = 2-x+3x2

8) y`` + 3y` + 2y = e2x cosx
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9) y`` + 3y` + 2y = x 2
1

(1 e )

10) y 3y y x cosh3x  

11) 2y 4y y xsin x   

12) 2y 2y y x   

13) y y csc(2x) 

14) y y y y cos(2x)   

15) 5xy 3y y e  

16) -4x xy 3y y e e  

17) 5x cos2xy 5y y e  

18) 2 xy y y y sin   

19) y 4y y cosh2x sin3x  

20) 4x2y 5y y xe  

21) 3y y xcos x  

22) 2y y 4tan x  

23) x
2

1
y y e 
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24) 3y y cosec x  

25) The current i flowing through a circuit is given by the
equation:

2

2
d i
dt

+ 60 di
dt + 500i = 0, evaluate the transient current and

voltage  at time t of the circuit composed of resistance of 20
 and inductance with 1 H, given    i(0) = 2 and

t 0
di
dt 

= 3.

26) y``` - 4y`` + y` + 6y = 4 sin2x

27) y``` - 3y`` + 3y` - y =  3 ex

28) y``` - 4y`` - 3y` +18 y = cos2x

29) y``` - 6y`` + 11y` - 6y = 2x e-x

30) y(4) + 2y`` +y = 0

31) y(4) -7y```+ 18y`` -20y`+8y = 0

32) y(4) +8y```+ 24y`` +32y`+16y = 0

33) y(4) + 2y`` +y = sin2x

34) (D2 + 9)y = cos3x

35) y`` - 4y` +5y = 2cosx

36) y`` +2y` +5y = 3cos(x- )

37) y`` -3y` +2y = 2 x2 + ex + xex + 4e3x

38) y`` +2y` +5y = e-x sin2x
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39) y`` - 2y` + y = (x2 - 1) e2x + (3x+4) ex

40) y`` + y` + 8y = (10x2 +21x + 9) sin3x + x cos3x

41) y``` - y` = 4e-x + 3 e2x

42) y(4) + y`` = 3x2 + 4sinx -2 cosx

43) y`` + y = cotx

44) -x
2

1
y 3y y e  

45) y``-2y`+ y =
xe

x

46) (D2 + 1)y = secx tanx

47) (D2 + 1)y = cscx

48) x2 y``+ 3x y` -8y = x (put x = et, Dy = Ey, D2y = E(E-1)y)

49) x2 y``- 3x y` +3y = x2 Lnx

50) y`` + y = sec2x

51) y`` - 6y` + 9y = x-4 e3x

52) y```-y`` = xex + 2x + 1 + 3 sin x

53)  y`` +4y` + 4y = 2x + 3

II) Solve system of equations:

1) y` = -6y + 4z,   z` = -8y + 2z
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2) y` = -8y - 10z,   z` = 5y + 7z, y(0) = 1, z(0) = 0

3) y` = ( 2 1) y + (2/ 3 + 1)z,   z` = - 3 y + ( 2 1) z

III) Choose the correct answer

1) A general solution to y``- 5 y` = 0 is

2) A suitable form of the general solution to y``-2y`+y=et + t
is

3) Which one is not the solution of the differential equation
y`` + 3y` + 2y = 0

( e-t, et, -e-t, -e-2t, 10e-t)
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4) The proper form of particular solution of the differential

equation                y```-3y``+3y`-y = 3 et is

a) Aet b) At2et c) At3et d) (Acost + Bsint)t2et

e) (At+B)t3et

5) The value of the constant r such that y = xr solves

x2 y`` + xy`-2y = 0 for x >0 are

( 2 , 2i , 1 2 , -1 and -2, 1 and -2)


